
Page 1 sur 16

Galil Motion Controller

Auteur : J. Coquet

Version courante du document : 1.2

Date de création document : Aout 2003

Dernière modification le 05/01/2004 18:49

Historique des modifications
Date Revision Description Author Reader

08/2003 1.0 Initial Version J. Coquet A. Buteau

10/2003 1.1 Rewriting Id/A.Thompson Thompson

12/2003 1.2 Minor modification after
LUCIA installation

A.Buteau A.Buteau

1 APPLICATION GOALS ..2

2 TECHNICAL SCHEME OF THE APPLICATION ...2

2.1 Hardware architecture.. 2

2.2 Software Architecture... 3

3 WHAT GALILAXIS (AND THE EMBEDDED MICROCODE) CAN DO..........................3

4 KNOWN LIMITATIONS ..4

4.1 Command limitations.. 4

4.2 Supported axis types... 4

4.3 Positioning capabilities.. 4

5 TANGO SOFTWARE ..5

5.1 Properties... 5

5.2 Attributes ... 8

5.3 Commands... 11

6 CONTROLBOX SETUP ..14

6.1 Network configuration réseau.. 14

6.2 First setup of TANGO DeviceServer... 14

7 GLOSSARY ..16

Page 2 sur 16

1 Application goals

The SOLEIL motion system, herein described, has been designed to allow the generic control
of motorized axes.

The axes are intended to be controlled for positioning purposes.

Speed control is possible but without guaranteed precision. (not tested, whe have to build a
validation platform to specify the accuracy)

Types of axes currently supported are : - :

• Stepper motor with optional encoder

• Brush or brushless motor (« servo ») with at least 1 encoder (possibility of 1 encoder
on the motor and 1 encoder on the load)

• Piezo actuator with encoder or analog feedback (for analog feedback : 12 bits
resolution standard, 16 bit resolution on special hardware)

Limit switches must be present for finite movements with mechanical stops.

Supported encoders :

• incremental encoders (TTL or differential, RS422) with optional reference position (
Top 0 or index)

• absolute encoder norme SSI (binary or gray code)

• sine/cosine encoder with TTL/RS422 conversion.

A HOME switch can be present (with some limitations described hereafter)

2 Technical scheme of the application

2.1 Hardware architecture

GalilBox

Motor

Position
encoder

Mechanical
linkage

DriverBox

Ethernet link

Limit or
home switch

SOLEIL control and
data acquisition

x 8 (maximum)

Applications
internes

ControlBox

Page 3 sur 16

2.2 Software Architecture

• The « micro code » embedded in the ControlBox handles (independently of the Tango Control
system) the axis positioning, jog, securities (hardware and software) the initialization of the
axis,…

• GalilBox ensures the serialization of commands and readings exchanged on the Ethernet link
to guarantee the integrity of data and command .

• GalilAxis offers a control interface for the axis, independent from the Galil Motion Controller
syntax.

3 What GalilAxis (and the embedded microcode) can do

GalilAxis has been coded for :

• Accurate positioning by closed loop control

• homing (go to a mechanical reference point such as a precision limit switch, a home
switch, on the top 0 encoder)

Moreover, it offers:

• Manual movements (jog mode)

DeviceServer Tango running on a
Control computer

Axis 1

Axis 2

Axis 8

Device GalilAxis 2

Device GalilAxis 1 Motion Controler
Galil (ControlBox)

Device GalilBox

Device GalilAxis 8
Microcode Axis 1

Microcode Axis 2

Microcode Axis 8

ethernet

Page 4 sur 16

• latching of the encoder values on a TTL input of the ControlBox (without interrupting
counting)

4 Known limitations

4.1 Command limitations

• AxisOscillate, oscillation between 2 positions, is not yet not operational, (to be implemented
in future version)

• GoToRelativePosition is not accurate, it adds positioning errors. This problem is not resolved
for the moment. (Improvements in the future version)

• Homing is partial, the ControlBox requiring a special mechanical design for Home switch :
The home signal must be present on half of the total travel. AxisFindEdge Command and
AxisFindHome command works only if this special design is present

• AxisFindIndex works only with an incremental encoder with optional Top 0.

4.2 Supported axis types

4.2.1 Axes tested

• Stepper motor without encoder

• Stepper motor with incremental encoder (or sin/cosine interpolation + TTL
converter)

• Stepper motor with absolute encoder SSI

• Servo Motor(brush or bruhsless) with incremental Encoder (Sine/cosine interpolation
+ TTL converter)

4.2.2 Axes not tested but should be supported

• Motor Servo (brush or brushless) with absolute SSI Encoder

• Motor Piezo- with analog or encoder feedback

4.3 Positioning capabilities

Software based, “microcode” embedded in the motion controller.

4.3.1 Without encoder : for stepper motors only

• Simple positioning

• Simple positioning with backlash compensation

4.3.2 With encoders : all motor types

• Simple positioning

• Simple positioning with backlash compensation (n retries)

• Positioning with successive closer moves (n retries)

Dépassement

Page 5 sur 16

• Simple positioning with mechanical backlash compensation and successive closer
moves (n retries)

5 Tango Software

5.1 Properties

The properties contain the fixed parameters of the axis. They are filled by the user at
install time, and are not supposed to be modified during runtime.

AxisNumber Number of the axis wired on the controlbox

Can be the number or the letter (Galil MC convention)

Relation :

1 A X

2 B Y

3 C Z

4 D W

5 E

6 F

7 G

8 H

Default : 1

AxisBoxAttachement Tango name of the ControlBox on which the axis is wired

Default : " "

EncoderMotorRatio Number of encoder steps per motor step.

Useful for stepper only.

Incremental encoders are interpolated by 4

For steppers without encoder and servo : set to 1

Example : encoder 5000 steps/rev, stepper 200 steps/rev, driver
tuned for 10 micro-steps by full step :

encoder = 5000 x 4 = 20 000

stepper = 200 x 10 = 2 000

EncoderMotorRatio = encoder/micro-steps = 10

Default : 1

Dépassement D

Page 6 sur 16

UserEncoderRatio User units divided by encoder step size.

Example :

User unit = 1 micrometer, 1 encoder = 100 nanometer,
UserEncoderRatio = 10.0

The formula used for calculation is :

AxisCurrentPosition_unités_utilisateurs =
(AxisCurrentEncoderPosition _unités_codeur *
UserEncoderRatio)-AxisOffset

Default : 1.0

CurrentXXXXX All properties beginning by “Current” are used to store in the
static database the last related attribute value. Not supposed to
be modified.

Example : CurrentAcceleration stores the last
AxisAcceleration.

No default.

AxisEncoderType Encoder type.

0 : no encoder.

1 : incremental encoder

2 : absolute encoder

Default = 1.

AxisEncoderDirection Useful only for incremental encoder

Fixes the encoder type and the counting direction.

For steppers only 1 encoder available : Main, Aux is used by
the step counter.

For servo : 2 encoders, Main and Aux

main on the motor, aux on the load

See Galil Reference manual, CE command

 Main encoder

Aux encoder

0 quadrature, normal direction

0 quadrature, normal direction

1 pulse and direction, normal direction

4 pulse and direction, normal direction

2 quadrature, reverse direction

8 quadrature, reverse direction

3 pulse and direction, reverse direction

12 pulse and direction, reverse direction

Page 7 sur 16

Default : 0

AbsoluteEncoderDirection For absolute encoder.

Defines the encoder counting direction

 1 : counts like the encoder

-1 : counts reverse the encoder direction

Default : 1

AbsoluteEncoderOffset For absolute encoder

Offset to subtract from the natural value of the encoder

Pay attention to the overflow! You may turn the encoder shaft
to find a value close to the real position of the axis and finely
tune using this property.

AxisMotorDirection Defines the motor type and direction

1.0 : servo motor

-1.0 : motor servo, reversed polarity

2.0 : stepper, pulse and direction signals active low

-2.0 stepper, pulse and direction signals active high

2.5 : stepper, pulse and direction signals active low , normal
direction

-2.5 : stepper, pulse and direction signals active low , reverse
direction

Default : 2.0

AxisForwardLimit software Limit in encoder unit (x 4 interpolation) of positive
move.

No move for a request higher than this limit, stop on that limit
reached

Low : – 2 147 483 648 high : 2 147 483 647

limit active at n-1.

Limit disabled at n = 2 147 483 647

Default : 1 000 000

ISN'T IT DANGEROUS TO SUPPLY AN ARBITRARY
HIGH DEFAULT HERE? IT ASSUMES THAT HARDWARE
LIMITS ARE PROPERLY CONFIGURED. 0 SEEMS TO ME
A SAFER DEFAULT!

AxisBackwardLimit software Limit in encoder unit (x 4 interpolation) of negative
move.

No move for a request lower the this limit, stop on that limit
reached

Range – 2 147 483 648 to 2 147 483 647

limit active at n-1

Limit disabled at n = -2 147 483 648

Default : -1 000 000

SAME COMMENT.

Page 8 sur 16

AxisInitType Initialization type of the axis

0 : no init possible : use AxisDefinePosition command.

1 : Initialisation on Home limit switch. Need a long Home
switch on half of the total travel.

Useful for servo, less on steppers

2 : Initialisation on the Limit Switch Backward (standard
motorist direction, doesn’t use AxisUserDirection)

3 : Initialisation on Top 0 encoder. Needs an incremental
encoder with Top 0.

Default : 0

AxisInitPosition Initial position in user units

Loaded on AxisInit success.

Default : 0

MotoristMemo Use it to store important axis parameters such as driver
location,…. Up to 255 characters.

ServoPIDProp Servo Motors (brush or Brushless) only.

Proportional coefficient of PID

See KP reference

ServoPIDInteg Servo Motors (brush or Brushless) only.

Integral coefficient of PID

See KI reference

ServoPIDDeriv Servo Motors (brush or Brushless) only.

derivative coefficient of PID

See KD reference

ServoPIDIntegLimit Servo Motors (brush or Brushless) only.

Integral limit if Integral component of PID

See IL reference

ErrorLimit Limit of dynamic error position on moving.

If ER exceeds ErrorLimit, motor stops and motor is disabled (
as MotorOFF command).

Not to be reached on normal operation, only if mechanical jam
or encoder or driver fault.

Useful for servo axes.

-1 : disabled

Max : 32767

Default : -1

5.2 Attributes

AxisCurrentPosition Read/Write

Page 9 sur 16

Read : current position of the axis in user units.

Write : starts a positioning on the axis.

see AxisGetMotionStatus() and state() to
control the positionning

The formula used for calculation of Read value is :

AxisCurrentPosition_unités_utilisateurs =
(AxisCurrentEncoderPosition _unités_codeur *
UserEncoderRatio)-AxisOffset

AxisCurrentEncoderPosition Read Only

Read : current position of the axis in encoder
units if any (or 0).

AxisCurrentMotorPosition Read Only

For stepper motors or servo + aux encoder

Read : Current position of the motor in steps .

AxisAcceleration Read/Write

Read : Current acceleration of the motor.

Write : new acceleration of the motor

In user units/sec.²

AxisDeceleration Read/Write

Read : Current deceleration of the motor.

Write : new deceleration of the motor

In user units/sec.²

AxisVelocity Read/Write

Read : Current speed of the axis

Write : new speed

User units/sec.

IS THERE A FLAG FOR WHEN THE AXIS
HAS REACHED CONSTANT SPEED?

AxisMotionAccuracy Read/Write

Motion accuracy, the position is considered as
correct if position reached <= desired position
+/- AxisMotionAccuracy

Read current accuracy.

Write : new accuracy

In user units.

Lower limit : 1 motor step or 1 encoder step

AxisPercent Read/Write

Coefficient for successive approach
positioning.

Read : current coefficient.

Write : new coefficient

Page 10 sur 16

In user units.

Minimum : 0.0 (no move)

Maximum : 1.0 (go direct to final position)

AxisRetry Read/Write

Number of successive retries when positioning
errors increasing?

Read : current number of retries (
decreasemented after each try).

Write : new retry number

AxisBacklash Read/Write

Compensation for mechanical backlash by
doing final move in the direction defined by
AxisDirection.

Read : current backlash distance.

Write : new backlash distance

AxisDirection Read/Write

Direction of final move (for mechanical
backlash compensation).

Write : modification of direction

0 : no mechanical backlash compensation

1 : final move direction = direction as defined
by Userdirection

1 : final move direction = reverse direction as
defined by Userdirection

AxisOffset Read/Write

Offset subtracted from current position
(AxisCurrentPosition).

Doesn’t change encoder or motor position.

Read : current offset.

Write : new offset

In User units

UserDirection Read/Write

Positive direction defined by the user. Has an
effect on move direction, AxisUserPosition.

encoder and motor remain unchanged.

Read : Current user direction of the axis.

Write : new user direction

1 : = motorist direction

-1 : user direction reverse of motorist direction.

AxisCurrentVelocity Read

Instantaneous speed of axis measured by the
axis Controler only if an encoder is present

Page 11 sur 16

Without encoder value is always 0

In user units/sec.

IsInitialised Read

0 : axis was not initialized at a known position.

1 : axis initialized.

IsInitialised set to 0 when the ControlBox has
been powered down or has been reset

LatchMode Read/Write

Capture of position mode. The encoder position
is latched upon transition of a TTL input from
the ControlBox.

Read :

0 : latch not armed

1 : latch armed

Write :

1 : arms latch

PositionLatched Read

Position value latched.

Reading this attribute rearms the latch

LatchOccured Read

1 : latch occurred

0 : latch armed, waiting.

5.3 Commands

AxisForward Requests a continuous movement positive
direction according to UserDirection. Stops on
AxisStop or limit switch forward (hardware or
software). Allowed if axis is in standby state.

AxisBackward Requests a continuous movement negative
direction according to UserDirection. Stops on
AxisStop or limit switch backward(hardware or
software). Allowed if axis is in standby state.

AxisGoToPosition Requests a positioning at absolute position
“argin” in user units. Allowed if axis is in
standby state.

AxisGoToRelativePosition Requests a positioning at relative position “argin”
in user units (actual position +/- “argin”).
Allowed if axis is in standby state. Not very
accurate, see Limits.

AxisStop Stops the current movement.

AxisOscillate Not actually useful. See Limits.

Page 12 sur 16

AxisGetMotionStatus Returns the simplified status of movement.

-1 : positioning ended with error.

 0 : positioning ended OK.

 1 : positioning running.

AxisGetErrorStatus Returns the error code.

-1 : positioning ended with error.

 0 : positioning ended OK.

 1 : positioning running.

2 ControlBox microcode not running

3 limit switch forward (according to
UserDirection)

4 limit switch backward (according to
UserDirection)

5 Execute Microcode command and microcode
already running

6 Begin movement not possible due to Limit
Switch

7 Axis configured both as master and slave

8 Jumpers need to be installed for stepper
operation

9 Axis not initialized

10 Command error

11 Invalid operand

12 number out of range

13 variable error

14 subroutine more than 16 deep

15 EEPROM checksum error

20 begin not valid when moving

21 decelerating or stopped by limit switch +
direction

22 decelerating or stopped by limit switch -
direction

23 stopped by ABORT input

24 stopped by ABORT command

25 decelerated or stopped on ON/OFF ERROR

26 stopped after Home switch edge detected

27 Stopped at the end of Home routine

28 Stopped on selective abort input

120 Bad Ethernet packet transmit

121 Bad Ethernet packet received

122 Ethernet buffer overflow

123 lost Sync TCP

Page 13 sur 16

124 TCP handle already in use

125 no ARP response from IP Address

126 Lost TCP/IP communication

State Returns the axis state

OFF : no communication

STANDBY : waiting for command

MOVING : moving

ALARM : axis in alarm, moving allowed

FAULT : fault (2, 7, 14, 15 errors)

DISABLE : non handled errors, must not occur in
normal operation..

Status Error in plain text, similar to AxisGetErrorStatus

AxisInit Initializes the axis according to property
AxisInitType

Executed after ControlBox power on, or reset.

Executes according to AxisInitType :

AxisFindHome

AxisFindIndex

Limit switch backward finding (in motorist
direction).

Then loads the value of AxisInitPosition
property.

AxisFindEdge Finds the edge of Home switch. Home switch
must be special design type.

AxisFindIndex Find top 0 of the incremental encoder if any.

AxisFindHome Finds the edge of Home switch then stops and
goes backward very slowly and stops on edge
detection.. Home switch must be special design
type.

AxisStartMicroCode Expert only. Starts microcode execution

NOINIT : parameters not resettled

INIT : parameters are resettled at their default
values

DirectCmd Experts in ControlBox only; direct command to
ControlBox. Only for use to other Dservers (ex.
GalilSlits) needing to access a special function
on the ControlBox.

MotorON Enables the power amplifier.

MotorOFF Disables the power amplifier. Only if the motor is
stopped (issue a AxisStop Command before
MotorOFF).

AxisGetHwConf Display axis parameters (axis letter, encoder
type, init type, etc)Useful for setup of an axis

Page 14 sur 16

6 ControlBox setup

6.1 Network configuration réseau

Each Controlbox must have a TCP/IP adress.

At boot, the ControlBox tries to get a valid adress from a DHCP server . If no one is available,
the Galil tool (DMCSetup) must be used.

The PC running the DMCSetup must be connected to the ControlBox through a serial
connection . Then

• Put the ENET switch in OFF position

• Open the serial line communication in DMCSetup

• Type the IA (Internet Adress) A,B,C,D command. A,B,C,D are the IP number of the
ControlBox

• Type the BN command(Burn Parameter)

• RS (ControlBox Reset)

• IA ? to verify adress

• Put the ENET switch in ON position

6.2 First setup of TANGO DeviceServer

6.2.1 Creation of the GalilBox Device

The ControlBox is supposed to be hardware ready (stepper jumpers installed, IP address
assigned), connected to the network, powered on.

The Tango static DataBase is running.

Using Jive :

• Create a Dserver GalilBox and register it

• Add property IPAddress and assign the IP Address of the new ControlBox

Page 15 sur 16

• Start the device server (dos box or script)

• Test the device (right click on DEVICE/Tango/test/newbox) select ping command, the
device responds ALIVE)

You have now the communication Device server installed and running.

6.2.2 Creation of a new axis : GalilAxis

You have a ControlBox and the related Dserver GalilBox running and want to add a new axis

• Make sure your axis hardware is correctly parameterized (stepper jumper).

• Select DSERVER/GalilBox/3, right click, “add class to server”

• Fill the form

Page 16 sur 16

• Create (or copy) the properties (from another axis)

The minimum set of properties to be filled in order to have a working axis are :

o AxisBoxAttachement

o AxisBoxAttachement.

o AxisEncoderType

o AxisNumber

o EncoderMotorRatio

Restart the Dserver GalilBox, the server GalilAxis should rise and respond.

7 Glossary

ControlBox : motion controller from Galil, 8 axis, ref. 2180, 2280, 2182 with SSI option

DriverBox : 19’’ rack containing the power amplifiers and some electronics.

Micro-pas : some power amplifiers offer the possibility to do micro-stepping.

Home switch with special feature : Home signal is present on half of the total travel.

Permits the ControlBox automatic Home find. See Galil Doc.

